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1946 - 1994

Amiram Harten, a professor of Mathematics at Tel-Aviv University and a consultant at ICASE,

died of a massive heart attack on August S, 1994. He was 47. He was associated with ICASE

since 1976 and had a great impact on the ICASE program of research in numerical analysis and

algorithm development. He was an active participant in ICASE activities and visited ICASE at

least once a year. His last visit to ICASE was during the week of May 22, 1994, when he participated

in the Parallel Numerical Algorithm Workshop. He planned to come back on August 29, 1994

to be at ICASE for a month. His untimely passing away is an irreparable loss to ICASE and the

mathematics community. He will be greatly missed by his friends and colleagues even as

his influence lives on.

This report is the written version of his lecture at the Parallel Numerical Algorithm Workshop,

and it is sadly noted to be his last ICASE report.





Multiresolution Representation and Numerical Algorithms:

A Brief Review

Ami Harten 1
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ABSTRACT

In this paper we review recent developments in techniques to represent data in terms of its

local scale components. These techniques enable us to obtain data compression by eliminating

scale-coefficients which are sufficiently small. This capability for data compression can be

used to reduce the cost of many numerical solution algorithms by either applying it to the

numerical solution operator in order to get an approximate sparse representation, or by

applying it to the numerical solution itself in order to reduce the number of quantities that

need to be computed.

1This work was partially supported by the National Aeronautics and Space Administration under NASA
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1. Introduction

Fourier analysis, which provides a way to represent square-integrable functions in terms

of their sinusoidal scale-components, has contributed greatly to all fields of science. The

main drawback of Fourier analysis is in its globality - a single irregularity in the function

dominates the behavior of the scale-coefficients and prevents us from getting immediate

information about the behavior of the function elsewhere.

The recent development of the theory of wavelets (see [Me] and [Ma]) was a great step

towards local scale decomposition, and has already had great impact on several fields of

science. In numerical analysis representation by compactly supported wavelets (see IDa] and

[CDF]) is used to reduce the cost of many numerical solution algorithms by either applying it

to the numerical solution operator to obtain an approximate sparse form (see [BCR]), or by

applying it to the numerical solution itself to obtain an approximate reduced representation

in order to solve for less quantities (see e.g. [aT], [MR] and [BMP]). The main drawback of

the theory of wavelets is that it attempts to decompose any square integrable function into

scale-components which are translates and dilates of a single function. Consequently there

are conceptual difficulties in extending wavelets to bounded domains and general geometries.

Furthermore, the uniformity of the underlying wavelet approximation makes it impossible to

obtain an adaptive (data-dependent) multiresolution representation which fits the approx-

imation to the local nature of the data. The only adaptivity which is possible within the

theory of wavelets is through redundant "dictionaries."

In a series of works [H1-3] we have studied the question of how to represent discrete data

which originates from unstructured grids in bounded domains in terms of scale decompo-

sition. Combining ideas from multigrid methods, numerical solution of conservation laws,

hierarchial bases of finite element spaces, subdivision schemes of Computer-Aided Design

and of course - the theory of wavelets, we came up with the more general concept of "nested

sequence of discretization." Given discrete data which can be associated with a nested

sequence of discretization we show that it has a multiresolution representation, i.e., a one-

to-one correspondence between the given data and its scale-decomposition. This framework

is a generalization of the theory of wavelets in the sense that under conditions of uniformity

its natural result is wavelets.

In this paper we review the work in [HY], [AC], [ACD], [H4-5] where the previously men-

tioned works on numerical solution algorithms with representation by wavelets are extended

to the more general framework of nested discretization.



2. Nested Discretization

In this section we describe the class of discrete data for which we can obtain representation

in terms of a scMe-decomposition. We start with two examples.

Example 1.

Let us consider continuous functions f in the interval [0,1]

f y = c°[0,11,

and let {xk}L= o be the following nested sequence of uniform grids

X k lxklJk Xki = ihk, hk = 2-kh0, Jk = 2k J0 (2.1a)"_- l i 1i=0_

for some integer J0 with ho = 1/Jo. Here k = L is the finest grid and k = 0 is the coarsest.

Observe that X k is obtained by dyadic refinement of X k-l, i.e.

xk2i -- x/k-1 , i = 0,...,Jk_l (2.1b)

llxk-1
x_i-1 = 2' i-, -4-xki-'), i= 1,...,gk-,. (2.1c)

Let us consider now the discrete values v k = {v_k}_J_0which are obtained from point value

discretization of f E _" in the k-th grid

v_ =: (7)kf)i = f(x_), i = O,...,Jk, 0 <_ k <_ L. (2.2a)

It follows from (2.1b) that v k-1 can be obtained from v k by the decimation

v, = i = o,...,Jk_l. (2.2b)

Let Ik-l(x; v k-_) denote any continuous function in [0, 1] which interpolates v k-1 at the

grid points of X k-l, i.e.

Ik-l(x; v k-l) e ._ _- C°[0, 11 (2.3a)

Ik-_(x_-';vk-1)=v_ -_ for i=O,...,Jk-, (2.3b)

e.g. we can take/k-l(x; v k-l) to be the piecewise-linear interpolation

x - x___ (v__ 1 v_-_), for k-1 < x < x_ -1. (2.4).__ -- Xi_ 1 __ __
Ik-l(x; V k-l) Vk-1 -t- hk-1

Given v k-1 we can approximate v k by

V k ,'_ Ik-l(xk;vk-1), i=O,...,Jk.
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Let us denote

e_=v_-- Ik-l(x_;vk-a), i=O,...,Jk

and refer to ek = {e/k}{_0 as the prediction error. We observe that

(2.5a)

e_i = 0 for i = 0,...,J__, (2.5b)

and denote the interpolation error at the odd grid points of X k by d k "fdk'[Jk-1t'_j Jj=l

d k --: e k -- vkj_l- Ik--l(xkj_l;vk--1), j --" 1, Jk-12j-1 " " ' _ " (2.5c)

Clearly there is a one-to-one correspondence between v k and {d k, vk-1}: Knowing v k we get

v k-1 and d k by (2.2b) and (2.5c), respectively. From {dk, v k-_} we recover v k by

v_=v_ -1, i=0,...,Jk_lv_,_,= Ik-'(_,_,; v_-_)+ a,_, i = 1,...,Jk-,.

(2.6)

Since 13k-1 can be likewise represented by {d k-l,v k-2} we get that there is a one-to-one

correspondence between the values of the finest level v L and the sequence of (JL + 1) elements

{dL,..., d l, v °} which we denote by _3M:

v L _ {dL,..., d', v °} =: UM. (2.7)

We refer to VM aS the multiresolution representation of V L. It follows from (2.2b) and (2.5c)

that the direct multiresolution representation (MR) transform v L _ VM can be expressed

by the following algorithm

DOk=L,...,1

k-, k i = O, . . . , dk_tV i = V2i _

k k Ik-l(xk . . k-l'_dj = v2j_ 1 - .. ,. 2j-t, v 1, j= 1,..., Jk-,.

(2.8a)

We denote this transform by M, i.e.

VM = M. v L. (2.8b)

Similarly it follows from (2.6) that the inverse MR transform tim _ v L can be expressed by

DOk=I,...,L

v_ = v_-_, i = 0,..., &_,

k k-I k . k-I k
v2j_ , = I (x2j_,,v )+dj, j = 1,...,Jk-1,

(2.9a)



and we denote

vL = M -1 • _M. (2.9b)

We refer to d k as the scale-coefficients of the k-th level of resolution. For the piecewise-

linear interpolation (2.4) we get from (2.5c) that

ltvk-, k-,); (2.10a)
d_ = v_j_ a - 2_ j-1 + vj

in terms of f E 9_ for which v k = Dkf this can be expressed by

d_(f) = -l[f(x_j) - 2f(x_j_,) + f(x_j__)]. (2.10b)

Hence if f(x) is twice differentiable in r k-1 k-ll[xj_ 1,xj I we get that

dk(f) _(hk)_f"(_) for some ¢ • (x_-_,=- xjk-a ) (2.10c)

and consequently the scale coefficients in a region of smoothness of f(x) tend to zero as

O((hk) for k --, _. However at a jump discontinuity d_(f) is proportional for the size of

the jump and thus remains 0(1) as k --+ _.

We can obtain data compression by setting to zero all scale coefficients which fall below

a prescribed tolerance. Let us denote

and

(2.11a)

_L = M-' . {dr,...,d',v°}. (2.11b)

Based on the analysis in [H3] we get the following bound on the compression error in the

case of piecewise-linear interpolation:

L

max Ivr - _P[ < Y_ _. (2.12a)
O<i<JL

- - k=l

Given any ¢ > 0 we can take

and thus ensure by (2.12a) that

ek "- 2k-L-le (2.12b)

max Iv_- $LI < e.
O<i<Jz

(2.12c)



Example 2.

Let us consider absolutely integrable functions f in [0,1]

f E _" = LI[0, 1],

and let

C k icklJk Cki ..._ k= (Xi_l,Xki), (2.13a)t i fi=l,

where {x_} are the gridpoints of X k in (2.1); observe that

C k-1 = cki_l [.J cki. (2.135)

Let v k l'v klak be discrete values which are obtained by taking the average over the cells"-- t i Ji=l

in C k of some function f C 2- = L l[0, 1]

v/k =: (Dkf)i = _1 f_ fdx, Ickil = hk, i = 1,...,Jk, 1 <_ k _< L. (2.14a)

It follows from the additivity of the integral and (2.13b) that v k-1 can be obtained from v k

(2.14b)

by the decimation

v)-' = 1+ vl,), i= 1,... ,Jk-,.

Let (T_kvk)(x) denote any function in L'[O, 1] which satisfies

1 _ (T_kvk)(x)dx = vki,

e.g. we can take _kv k to be the piecewise-constant function

(T_kvk)(x) = v) for x • c_.

i= 1,..., Jk (2.15)

(2.16)

In the context of ENO schemes for the numerical solution of conservation laws we refer to

_k as reconstruction from cell-averages and to (2.15) as "conservation" (see [HEOC]).

Given v k-1 we can approximate v k by

1 _ (_k_lVk_l)(x)d xvk _ (Dk " _'_k-lt)k-i)i -"" _ k,

i.e. by first approximating f from v k-1 by 7a..k_lv k-1 and then taking cell-averages of this

approximation over the finer level k. It follows from the conservation property (2.15) that

the prediction error e k,

eik = v/k - (_Dk" _k-,Vk-1)i, i = 1,...,Jk (2.17a)
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satisfiesthe relation

Therefore,if westore

_i-, + e_ = 0 for i = 1,...,Jk-1.

d k = e k2j-1

we can recover the prediction error ek by

{ _,_, = d_

for j = l, . . . , Jk-1

(2.17b)

(2.18a)

i

_=0, Ft=h_Ev], l<i<J_, (2.21a)
j=l

by

and thus get a one-to-one correspondence between v k and {d_,v_-l}. As in the previous

example this leads to the multiresolution representation

v L _ {alL,..., d 1, v °} =: VM

where the direct MR transform VM = M • v L can be expressed by the algorithm

DO k = L,...,1

v_-' = _(v__l__ + v_,), i = 1,...,J__, (2.19)

and the inverse MR transform v L = M -1 • ?)M is given by

DO k= l,...,L

DO i = 1,...,Jk-1

(2.20)
uki_l I= _ L_,_,(r_-,v_-')(x)d_+ _

vk2i _--2v_ -1 _ vk2i_l.

Observe that the last statement of (2.20) is obtained from (2.14b).

In [HEOC] we showed that any interpolation method (2.3) gives rise to a reconstruction

from cell-averages (2.15) by the following "reconstruction via primitive function" technique:

Given cell-averages v k = Dkf in (2.14a) we calculate

ZF_ = F(x_), F(x)= f(y)dy



and define

(nkvk)(x)= d Ik(x; Fk), (2. 1b)

where Ik(x; F k) is any interpolation of the values F k = t r,k_Jk1" i Si=0 at the grid points of X k in

(2.1a).

In the previous two examples we have shown how to design MR schemes for discrete

data v 5 which is obtained from discretization of functions by point values (Example 1) or by

cell-averages (Example 2) in the nested sequence of uniform grids of [0,1]. In [H2] and [H3]

we have presented a more general class of discrete data which can be represented by a scale

decomposition. This class is characterized by the following notion of nested discretization.

Definition. We say that a sequence of linear operators {Dk}_=0 is a nested sequence of

discretization if

(i)

Dk : _" 2_ V k, dim V k = Jk, (2.22a)

(ii)

7:;)kf = 0 _ T)k-1 f = 0 (2.22b)

Here .T" is a space of mappings and V k is a linear space of dimension Jk.

In the next section we show how to obtain multiresolution representation of any discrete

data v L = 79L f, where the scale-decomposition corresponds to the levels of resolution which

are introduced in (2.22). This is a very general framework which allows for discretizations

corresponding to unstructured grids in several space dimensions.

3. General Multiresolution Representation Schemes

In this section we consider discrete data which is associated with a nested sequence of

discretization L{Ok }k=0 and show how to design schemes for its multiresolution representation.

First we show that a nested sequence of discretization comes equipped with a decimation

operator D_ -1 which is a linear mapping from V k =/)k(_) onto V k-1 = T)k_l(9 t')

Vk V (3.1a)

This decimation operator is defined as follows: For any v in V k there is at least one f E .T"

such that Z)kf = v; the decimation of v is Z)k-lf C V k-_, i.e.,

v E V k, v = Z)kf, D_-lv= T)k-lf. (3.1b)



It follows from (2.22b) that Dkk-1 is well-defined by (3.1b), i.e. its definition is independent

of the particular f. To see that let us take fl and f2 in _" such that

_fl = v = 7)kA,

then by (2.22b)

0 = vkf, - vkf_ = v_(f, - f2) _ 0 = vk-,(fl - A) = _)k-,A - Dk_af_

which proves our claim.

Given v L E V L we can evaluate " k_r-_i v tk=0 by repeated decimation

v k-_=D_-_v k, k=L,...,1.

Since (3.1b) implies that

(3.2)

D_-'(:Dkf) = Dk-,f for any f C .T" (3.3)

we get for any f E _" for which v L = DLf, that v k = :Dkf for all k in (3.2). We would like

to stress the point that, as in (2.2b) and (2.14b) in the previous examples, this decimation

is done withoul_ explicit knowledge of f.

Since by (2.22a) V k =/)k(gt-), it follows that/)k has a right-inverse (at least one) which

we denote by Rk:

_k : V k -* Jr, 1)kTtk = Ik, (3.4)

where Ik denotes the identity operator in V k. Since (T_kv k) E _" is an approximation to any

f E _" for which Dkf = v _, we refer to _k as a reconstruction of/)k; see (2.3)-(2.4) and

(2.15)-(2.16) in the previous examples.

Next we show that any sequence of corresponding reconstruction operators {_k}_=0

defines a MR scheme for discrete data vL in V L. Starting from v k-1 in (3.2) we can get an

approximation to v k by

v k _ Ok(7_k_lVk-_).

We denote

Pk_ 1 =: T_kT_k-1, Pk 1 : V k-1 --_ V k (3.5a)

and refer to it as prediction operator. It follows immediately from taking f = ?_k_lv k-1 in

(3.3) and using (3.4) that P__, is a right-inverse of the decimation D_ -_

(3._b)Dk-1 pk
k * k-1 -'- Ik__.

We observe that the prediction error e k

(3.6a)_ = vk- PL,_ _-' = (lk - .__, _._-'),*
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satisfiesthe relation

Dk-'ek= D_-lvk-(D_-'P__a)v k-' =v k-' v k-' =0

and therefore it is in the null space of the decimation operator

ekeAf(D_ -1)={vl ve V k, D_-'v=O}.

It follows from (3.1a) that

dimA/'(D_ -1) = Jk- Jk-1

(3.6b)

(3.7a)

given v k-1 and d k we recover v k by

P__lv k-1 + E_d k =

= D_-lv k

Gk(Ik ,-,k ,,k-l, k-- -- I"__IL/k )V

Pkk nk-lvk EkGk(Ik ,_k r_k-l\ k-1 _'k + - ri,-1 _k )v

(Ik ,,k ,.k-l, k_luk v + - ri_lu k )v

V k .

As in the previous examples this shows that

v L _ {dL,..., d 1, v°} --: VM, (3.9)

At this point we can show that there is a one-to-one correspondence between t, k and

{d k, vk-1}: Given v k we evaluate

and hence
k Jk--Jk-1

JV'(Dkk-1 ) = span{pj }j= 1 , (3.7b)

where e klJk-Jk-1
_tljlj=l is any basis of ._(D_-I). Therefore the prediction error ek, which is

described in terms of Jk components in V k, can be represented by its (Jk - Jk-1) coordinates

d k in (3.7b)
Jk -Jk-1

ek E k k , d k= djtt j =: Ekd k =: Gke k. (3.8a)
j----1

Here Gk denotes the operator which assigns to e k E .Af(D_ -1) its coordinates d k in the basis

k._Jk-Jp,_l k-1
ttj Ij=1 ; observe that EkGk is the identity operator in Jk/'(D k ), i.e.

EkGke k = ek for any e k E JV'(Dkk-1). (3.8b)



wherethe direct MR transform flu = M • v L is given by the algorithm

DOk=L,...,1

"ok-l= D_-lv k (3.10)

d k = Gk(Ik -- pkk_l Dk-lk )vk =: GDvk

and the inverse MR transform v L = M -1 • 6M can be calculated by

DOk=I,...,L
(3.11)

v k = P__l vk-i + Ekd k.

We remark that in multigrid terminology D_ -1 is "restriction" and Pkl is "prolongation."

In signal processing D_ -1 plays the role of "low-pass filter" while G D, which is defined in

(3.10), plays the role of "high-pass filter."

Example 3. Biorthogonal Wavelets.

In this example we derive the MR schemes which correspond to the bases of biorthogonal

wavelets in [CDF]. These MR schemes are obtained from nested discretization of functions in

L_oc(R ) by taking weighted-averages on a nested sequence of uniform grids of R, as follows:

1 F (x-:-X_dx,-c¢ < i < cx), (3.12a)(l)kf), = -_k oo f(x)w hk ]

where w E L2(R) is a weight-funcntion

f_ w(x)dx = 1 (3.12b)

and

x_ = ihk, -ec < i < c_, hk = 2-kho. (3.12c)

In order to obtain a nested sequence of discretization we want to choose w(x) so that

N

(79k-lf)i = Y_ at(:Dkf)2i-e
t----O

where at, e = 0,..., N are real numbers. We observe that since

f(x) = c = constant _ (Dkf)i = c Vi, k

we have to limit the choice of {at} by

(3.12d)

N

a, -- 1. (3.13a)
t=0

10



From (3.12d) and (3.12a) weget that for any f E L_o¢(R )

0= _ hk_, ]- __w h-;
co t=O

this shows that w(x) has to satisfy the functional equation

N

w(x) = 2 _ c_w(2x - e). (3.13b)
t=O

This equation has been investigated in [Da] and [CDF] and got the name of "dilation equa-

tion" in IS]. It is shown there that subject to condition (3.13a) the dilation equation (3.13b)

has a distribution solution which is determined up to a multiplicative constant and a shift,

and that w(x) has a support of size N. Furthermore, if

cr2_ = y_ a2_-1 (3.13c)
! t

then w(x) is also square integrable.

We make the choice of w(x) unique by imposing (3.12b) and fixing its support in, say,

[-N, 0]. With this choice of a weight-function, the sequence of discretization in (3.12) is

nested and its decimation operator is given by

(D_-'v), =: _ a_v2,-t = Y_ o_2,_mvm.
m

In [Da]and [H3]it is shownthat k co{,_}j---oo,

(3.14a)

(#_)i- (--1)i+lc_2j-i-1, --(:x:) < i < (3.14b)

is a basis of A/'(D_-') in (3.6b).

We reconstruct the discretization Dk in (3.12a) as follows: We take a sequence {Be} of

compact support which satisfies

Zt atZ_+2., = _,,,,o

and define

(_)(_) = _'_ h_ '
s

where _o(x) is a solution of the dilation equation

(3.15)

(3.16a)

_(x) = _ Z_v(2x- _) (3.16b)

11



which is normalizedby

/ ¢p(x)w(x)dx = 1. (3.16c)

It is easy to see that the corresponding prediction operator P_-I = T_kTCk-1 is given by

(P__,v), =: _ fl-2.,v., (3.17)
m

Daubechies' orthonormal wavelets are obtained by imposing the additional condition

fit = 2at

(see [H21 and [H31 for more details).

We remark that the "fundamental solution" for the dilation equation (3.13b) with

al = $_,o (3.18a)

is

w(x) = 5(x), (3.18b)

where 5(x) is the Dirac distribution (see [S]). In this case (3.12a) becomes the point value

discretization (2.2a) of Example 1. However, since 5(x) is not square integrable, point value

discretization is excluded from the theory of wavelets. For

1 5
as = 7( _,0 + ge,1) (3.19a)

we get

1 -1 < x < 0w(x) = 0 otherwise (3.19b)

which is square integrable, and the discretization (3.12a) becomes the cell-average discretiza-

tion (2.14a) of Example 2. Observe, however, that the theory of wavelets is for the infinite

domain R, while our formulation is suitable for both the finite (Example 2) and the infinite

case (Example 3). Furthermore, unlike the theory of wavelets which uses translates and

dilates of a single function for both discretization and reconstruction and consequently is

restricted to uniform grids, our framework of nested discretization allows for general ge-

ometries. In [H3] and [AH1] we extend the multiresolution representation of cell-averaged

data in Example 2 to unstructured meshes in bounded domains of Rm,m > 1, by using

agglomeration of cells to generate a nested sequence of discretization.

In [ADH] we consider the case where w(x) in (3.12) is the "hat-function" and show how

to improve data compression by using adaptive prediction techniques near discontinuities

and distributions.

12



4. Multiresolution Representation of a 2-Dimensional Array

In this section we consider functions f

f: [0,1] × [0,1] --. R

which are discretized on the tensor-product grid

by

X k {(X_,-kxllVk---- a_j ) j i,j=O

A _11' (x, ( )'a hk ] w _ dxldx2

(4.1a)

(4.1b)

(4.1c)

where {x k} are the one-dimensional gridpoints in (2.1) and w(x) is a weight-function as in

Example 3; by (3.18) and (3.19) this includes point value and cell-average discretizations.

Although this case is covered by the general framework in (3.9)-(3.11), it is convenient here

to represent the two-dimensional array in (4.1) as the Nk × Ark matrix A k, and to use tensor-

product extension of the corresponding one-dimensional operators to get a MR scheme for

the input A L.

Let us denote the matrix representation of the various one-dimensional operators by

of-' ----,

P_-I _ (P)Nk×Nk-1

G° = Gk(h - ok r)k-,_•k_l_,k j --_ (GD)Nk_,×Nk= C(I - PD)
(4.2)

Ek _ (E)N_×Nk_,.

These matrix representations are obtained by taking v k and d k in (3.10)-(3.11) to be column-

vectors, e.g.
Nh

vki-' = (D_-lvk) i =: E D,jv), 1 < i < Nk_, (4.3a)
j=l

where by (3.14a)

(4.3b)Dij = ot2i_j ;

for simplicity we drop the index k.

Starting with A n we decimate to get

(4.4)A k-' = DAkD *, k = L,...,1;

here (.)* denotes the transpose. Given A k-1 we get an approximation to A k by

A k ,._ pAk-'p •

13



and observethat the prediciton error matrix e k

e k = A k _ pAk-ap *

satisfies

(4.5a)

14

DekD * = 0. (4.5b)

The dimension of the null space of the decimation operators here is

Jk - J_-, = (2Nk-,) 2 - (Nk-,) 2 = 3(Nk-1) 2

and we store the scale-coefficients d k in three Nk-1 × Nk-1 matrices A1k, A k, A k.

Using the matrix identity

I = PD + EG °, G ° = G(I- PD), (4.6)

we show that if we take A k and A k-1 from the sequence (4.4) and define

A_ = GDAk(GD) *, A_ = DAk(GD) *, A k = GDAkD * (4.7)

then A k can be recovered from A k-1 and the above by

At'= PAk-'P * + EASE* + PA_E* + EAkzP *. (4.8)

This follows immediately from the identity

A k = (PD + EGD)Ak(PD + EGO) * = P(DA_'D*)P *

+ E[GDAk(GD)*]E * + P[DA_(GD)*]E * + E(G°AkD*)P*.

We conclude from (4.7)-(4.8) that A 5 has a multiresolution representation ,4M,

({ L}: , .,{A_}: ,A °) (4.9)A L_AM=: A =1 "" =1 '

where the direct MR transform is given by

DO k= L,...,1

A k-1 = DAkD * (4.10)

A_ = GDAk(GD) ", A_ = DAk(G°) *, Ak3 = GOAkD ",

and the inverse MR transform is

DO k=l,...,L
(4.11)

A k = PAk-IP * + EASE* + PAIE* + EA_P*.



In Figure 1, which is taken from [HY], we show the result of applying thresholding with

tolerance e = 10 -7 to -4M in (4.9) where

AiJ=- _ _ if i#j

[ 0 ifi-j

(4.12)

Here we take NL -- 512 and use point value discretization which is reconstructed by a

sixth-order accurate piecewise-polynomial interpolation with a centered stencil; near the

boundaries we use one-sided stencils. The rate of compression, i.e. the ratio of (NL) 2 to the

number of entries in ii, M which are above the tolerance c = l0 -7, is 8.57. This example is

taken from [BCR] where it is done with MR schemes which use Daubechies' wavelets; the

corresponding rate of compression for wavelets with six vanishing moments is reported to be

7.33 .

In Figure 1 we display the results by writing AM in (4.9) as the matrix

m

A] A°

and marking the entries that are larger in absolute value than 10 -_ by a black dot.

5. Multiresolution Algorithm for Matrix-Vector Multiplication.

In this section we describe an algorithm to reduce the cost of evaluating the matrix-vector

multiplication c,

c=Ab, (5.1)

where A is a NL x NL matrix which can be thought of as the discretization (4.1) of some

piecewise-smooth function, and b is any vector of NL components; note that we do not make

15



any smoothnessassumptionson b.

obtained from discretization of the integral transform

here

As an example let us consider the case where (5.1) is

jr01c(x) ---- a(x,y)b(y)dy; (5.2a)

c, hL.a(x,Lx ), b(x2), (5.2b)

and we want to evaluate (5.1) to a specified tolerance which is taken to be of the order of

the discretization error in (5.2).

The basic idea is that the product c = Ab, which is being set up as cL = ALb L, has a

meaningful analog

ck = Akb k, k = L - 1,...,0 (5.3a)

corresponding to the k-th grid, and that

(5.3b)ck = Pc k-1 + correction,

where P is the matrix representation (4.2) of the one-dimensional prediction operator, and

the "correction" comes from locations in [0, 1] × [0, 1] where a(x,y) is still not "sufficiently"

resolved on the (k - 1)-th grid. To obtain (5.3) let us multiply (4.8) by bk to get

Akb k = pAk-l(p'b k) + EAkx(E*b k) + PAk2(E*b k) + EAka(P*bk),

from which we see that if we define

bk-1 = P*b k, k = L,...,1 (5.4a)

and denote

s k-1 = E*b k, k = 1,...,L (5.4b)

then we can rewrite the above identity as

ck -- pck-1 + E(A_s k-1 + A_b k-')+ P(A_sk-'). (5.4c)

Using this observation we get the following algorithm for the approximate (up to a specified

error) evaluation of the matrix-vector multiplication (5.1):

(A) Preparation:

(i) Given A, set A L = A and use the direct MR transform (4.10) to obtain the MR

representation A M (4.9).
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(ii) Apply thresholding to AM in order to obtain a sparse representation.

(B) Multiplication:

Given any vector b

(i) Set bL = b

DO k=L,...,1

b k-1 = p*b k

sk-1 = E*b k

(ii) Calculate directly

(5.5)

(this is done on the coarsest grid).

(iii)

co = A°b ° (5.6a)

Set c = CL.

DO for k=l,...,L
c k = p(c k-1 + Ak2s k-l) + E(A_s k-1 + Akb k-')

(5.6b)

In the case of pointvalue discretization this algorithm turns out to be identical to the

multilevel matrix multiplication of Brandt and Lubrecht in [BL]. The algorithm which cor-

responds to Daubechies' orthonormal wavelets is identical to the "non-standard form" of

Beylkin, Coifman and Rokhlin in [BCR]. We remark that (5.5)-(5.6) is a slight generaliza-

tion of the algorithm which was presented in [HY].

Based on the analysis in [BCR] we show in [HY] that if the kernel a(x, y) in (5.2a) satisfies

ca
IOta(x,Y)l< Ix_y]e+l, g=0,''',r-1 (5.7)

then outside a diagonal band of width B, the entries of the matrices { k 3Am}m= 1 are not larger

than O(B-_), where r is the order of accuracy of the reconstruction technique. Since the

matrices P and E are banded, we get that the complexity of the algorithm in (5.5)-(5.6) is

O(NL) .

In [HY] we used the above matrix-vector multiplication algorithm to apply the matrix

in (4.12) to a vector b with "randomly generated" components. Using single precision we

obtained for the case in Figure 1 a relative residual error IIAb-cll/llbl] which was 7.52 × 10 -6

in the el norm, and 4.41 × 10 -5_in the go_ norm.
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6. Multiresolution Form of Numerical Schemes.

In this section we consider the numerical algorithm

v '_+1 = Av '_ + g (6.1a)

which describes either an iterative procedure or a numerical scheme for the solution of an

initial value problem. Taking the MR transform of (6.1a) we get

^ An

fi_+l = My,,+, = (MAM-_)(Mv n) + Mg =: Asv M + _M; (6.1b)

observe that fi, s = M AM-l, the multiresolution form of the matrix (= operator) A, is

different from AM, the multiresolution representation (4.9), where A is treated as a two-

dimensional array and not as an operator.

From (3.10) we get that My L can be expressed by

d k D k ..DL-1 v L BkLvL,

= G k (Dk+l" )" =:

v o = (DO... DL-,). uL ..._.: B_v L.

k=l,...,L

(6.2)

From (3.11) we get that M-I_M can be expressed by

L

M-'fiM = Y]_ CLd k + CoLv °, (6.3a)
k--1

where

{c$ =

•"-P_ )Ek,

CoL=pL_I...P _.

Using (6.2)-(6.3) to epxress (6.1b) with g = 0, we get

k = l,...,L

(6.3b)

dk,n+l L k L de,,, (B_AC L) vO,,_,

- _t=l (BL AC_ ). +

V0,n+l L 0 L dt,n (B_ACo L) vO,,_= Et=l (BL AC_ )" +

k = 1,...,L

(6.4a)

which shows that
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B_AC_

A S =

BfAC_

°° ° o

S'_AC_

stAc_ • . .

sfAc_

(6.4b)

BIAC_

Observe that the block B_AC_, 1 _ k,g < L, is ofsizeNk_l ×N,-1.

In the Appendix we show that 6eL = (/_)" where/_/is given by (6.2) for the dual MR

scheme; hence

(6.5) B_AC L = B_A(Be) *

and each column of (B_A) is d k, the scale coefficients (6.2) of the k-th column of A, white

each row of A(/_)" is (de) *, where d t is the column-vector of scale coefficients of the data in

the f-th row of A which is obtained by the dual MR scheme.

We remark that when M in (6.1b) corresponds to Daubechies' orthonormal wavelets, As

is identical to the standard form which was introduced in [BCR]. In this case the MR scheme

is dual to itself, i.e. /_Lk = BLk and therefore M -1 = M*. It was shown in [BCR] that if A is a

discretization of a Calderon-Zygmund operator, then data compression of each block in (6.5)

results in a "diagonal" band, the width of which is independent of k and f. Consequently

applying data compression to /is results in a finger-like structure of non-zero entries, and

their total number is O(NL log 2 NL).

In [AC] and [ACD] the standard form of [BCR] was extended by (6.1b) to point value and

cell-average discretizations. It is shown there that, inspite of the lack of symmetry, the rate

of compression compares favorably to that of orthonormal wavelets: It is about the same in

the periodic case, but it is significantly better in presence of boundaries.

In Figure 2, which is taken from [AC], we show the nonzero entries of/Ls, the multires-

olution form of the matrix in (4.12). As in Figure 1 we use point value discretization which

is reconstructed by piecewise-polynomial interpolation, however here NL = 64.
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The presentworkextendsthe scopeof application of these algorithms to the general class

of MR schemes in (3.9)-(3.11).

7. Multiresolution Application of Operators.

In this section we describe multiresolution algorithms for the solution of integral equations

and for the numerical solution of initial-value problems. We shall say that a matrix is T-

Sparse if it becomes sparse under thresholding, and refer to the number of non-zero elements

as its T-sparseness. In this language we can express the main result of the previous section

by saying that the multiresolution form A,s of Calderon-Zygmund operators is T-sparse and

that the T-sparseness of As is O(NL log2 NL).

7.A. Integral Transforms and Equations.

In section 5 we described a multilevel algorithm for matrix-vector multiplication (5.1)

and showed that if it corresponds to a discretization of an integral transform of the form

(5.23) with a kernel which satisfies (5.7), then it can be performed in O(NL) operations. We

can also evaluate c = Ab from its multiresolution form by

b M = Mb,
CM = AsbM,

C = M-lcM .

(7.1)

^ ^

Since the T-sparseness of As is O(NL log_ Nt,) this is also the cost of the product AsbM; in

addition we also have to apply the direct MR transform to b and its inverse to (3M. Hence,

unless we are in a special situation in which (3M and/or bM are also T-sparse, it is more

efficient to calculate integral transforms by the multilevel algorithm (5.5)-(5.6).

A situation of this type occurs in a matrix-matrix multiplication C = AB where both

As and J_s are T-sparse

Cs = MCM -_ = (MAM-_)(MBM -1) = AsBs. (7.23)

Of particular interest is the case where the T-sparseness of

M(A)"M -_ =(ks)" (7.2b)

is uniform in n. In this case (¢i,s)'_ for n = 2m can be computed in m steps of squaring and

thresholding

(As)2k= --[(/i,s)2k-']2, k = 1,...,m, (7.3)

where each product above is between matrices with T-sparseness of O(NL log2 NL).
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The numerical algorithm (6.1a) canbe written as

n-1

v" = (A)"v ° + Y_(A)J-lg (7.4a)
j=O

or in its multiresolution form (6.1b) as

n--1

j=0

Following [BCR], [EOZ] and [ACD] we use the following algorithm for the fast evaluation of

(7.4a) for n = 2":

(i) Set
B = MAM -1

(ii)

(iii)

C=I

Calculate

DO m times

C= trl C + l

B = tr(BB;e)

C = tr(C + BC; e)

v" = M-a(BMv ° + CMg);

here tr(A; _) denotes the truncation operation

(7.5)

Aij if ]Ai,i[ > e
[tr(A;¢)lij = (7.6)

0 if ]Aij[ < ¢

Fredholm integral equations of the second kind are usually solved by iterative procedures

of the form (6.1a). In this case the gain in efficiency which is offered by algorithm (7.5) is

based both on the compression of the operator A by

A ----* tr(ft,;e) (7.7)

and using the fact that the T-sparseness of (As)" remains constant as n increases.
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7.B. Initial Value Problems.

Consider the evolution equation

Otu + l_(x, Ox)u= f(x) ,x E n t >0

u(x,0) = so(x)

with boundary conditions, where £ is a differential operator.

typically takes the form (6.1a)

v"+ 1 = Av '_ + g

where

(7.8)

An explicit discretization

(7.9a)

v; ,,(xj,tn), gj Atf(x ), (7.9b)

tn = nat and {xj} is a grid in ft.

It is shown in [EOZ] that using the multiresolution algorithm (7.5) to calculate large-

time solutions of one-dimensional hyperbolic problems to a fixed predetermined accuracy

can be reduced from the standard O((NL) 2) to O(Ni(log2NL)3). For parabolic equations,

a standard explicit calculation with complexity O((NL) z) can be likewise reduced by (7.5)

to O(NL(log 2 NL)3). The multiresolution algorithm (7.5)in [EOZ] is based on Daubechies'

orthonormal wavelets. In [ACD] this algorithm is extended to point value and cell-average

discretizations.

As an example let us consider the simplest hyperbolic problem

ut + u_ = 0 (7.10a)

and its solution by the Lax-Wendroff scheme

v_+l _ n _2
= v_ - _(v_+, - v;",) + _- (vi"+l - 2v_ + v_l) =: (Avn)i (7.10b)

where _ = At/hL.

The matrix A is a tridiagonal matrix and thus has 3NL non-zero entries. On the

other hand As, the multiresolution form of the scheme, has a finger-like structure with

O(NL log2 NL) non-zero entries. In Figure 3, which is taken from [AC], we show the mul-

tiresolution form of the Lax-Webdroff scheme for NL = 64. This shows that unlike the

application to iterative solution of integral equations where (7.7) results in a "compressed"

representation of the operator, the gain in efficiency in large-time computation of hyperbolic

problems is only due to the uniform T-sparseness of powers of As, i.e. while (A)" fills up

linearly in n, the T-sparseness of (As)" remains O(NL log 2 NL)for all n.

In the following we describe another application of the multiresolution form (6.1b) which

uses data-compression of the numerical solution v" and the finite-speed of propagation in
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hyperbolic problems in order to produce a multiresolution analog to adaptive grids. Let

Ft(v n) -- {(j, k)l [d_(vn)l>_ek} (7.11a)

denote the domain in the (j - k) plane which contains all the significant scale-coefficients

of v '_, and let F_ denote the domain which is obtained by enlarging Ft(v") by adding side-

neighbors of the cells in Ft(v n) and allowing for a growth of one scale per time-step where

needed. Due to the finite speed of propagation in hyperbolic problems

~_ (7.11b)Ft(v n+') C Ft.

Therefore we can set the components of 9_1 which are not listed in F_ to zero, and evaluate

^ F t. The computationalthe product row(_,s) times v_t only for those rows which are listed in -'_

work can be further reduced by taking into account the T-sparseness of _5_4.

This technique can be extended to nonlinear problems. In [LT], [MR] and [BMP] it is

shown how to derive a multiresolution scheme for the numerical solution of Burgers' equation

ut + uu_ = vu:=, v > 0 (7.12)

in which the time-evolution is restricted to the significant scale-coefficients of the numerical

solution. This numerical scheme is obtained by a Galerkin approach in which the PDE is

projected on a basis of wavelets. We remark that this Galerkin-type scheme is not suitable

for the "inviscid" Burgers' equation (u = 0 in (7.12)) in the sense that it generates spurious

oscillations at shocks, and may even become unstable in some cases - thus some form of

artificial viscosity is needed.

In [H4] and [nh] we consider a hyperbolic system of conservation laws

ut + f(u)x = 0 (7.13a)

and its numerical solution by any scheme in conservation form

vy+'=vy- - L-,) (7.13b)

where

j _ -- _. "''' n -- 'f(vj_K+l, Vj+K) for some K > 1 (7.13c)

and f is the numerical flux function. Observe that the computational task here is the evalu-

ation of the numerical flux function (7.13c) at all the gridpoints. Using the mnltiresolution

form of the numerical scheme (7.13b) with respect to cell-average discretization we derive an

algorithm for the time-evolution of the scale-coefficients, and show that data compression of
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the numerical solution can be translated into reduction of the number of flux calculations in

(7.13c).

In Figure 4 we show the results of [H5] for the multiresolution form of the Lax-Wendroff

scheme which is applied to the periodic initial value problem for the "inviscid" Burgers'

equation.

ut+uu_=O ,-l<x<l ,t>0

u(x,0)= 2 +

with JL = 256, CFL = 0.8, and tolerance ¢ = 10 -3.

(7.14)

Figure 4 consists of 3 snapshots

corresponding to n = 25,150,400 time-steps. In the upper part of each snapshot we compare

the solution of the MR scheme (circles) to the solution of Lax-Wendroff scheme on the finest

grid (continuous line), which is computed independently. In the lower part of each snapshot

we display F_(v n) (circles) and its corresponding estimate F_ (dots). This is done by drawing

{X k-1 k) in the x- k plane for each (j, k) in the set; note that due to a differentthe symbol at _ 2j-1,

notation in [H5] k = 0 is the finest grid, and k = L = 5 is the coarsest. In the Table we list

the efficiency (i.e. the ratio between the fine grid calculation of 256 fluxes over the number

that we actually had to compute) and the difference Era, m = 1, 2, c¢ in the corresponding

norm between the solution of the MR scheme and the independent finest-grid calculation.

In [BH1] we extend this technique to the numerical solution of

ut + div f(u) = 0 (7.15)

on Cartesian grids, and in [AH2] we generalize it further to unstructured meshes where the

coarser levels of resolution are obtained by agglomeration of cells.

8. Conclusions.

In this paper we reviewed recent developments in techniques to represent data in terms

of its local scale components. These techniques enabled us to obtain data compression by

eliminating scale-coefficients which are sufficiently small. This capability for data compres-

sion can be used to reduce the cost of many numerical solution algorithms by either applying

it to the numerical solution operator in order to get an approximate sparse representation,

or by applying it to the numerical solution itself in order to reduce the number of quantities

that need to be computed.
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Appendix: The Dual MR Scheme.

In this appendix we describe the MR scheme which is dual to the one in (3.10)-(3.11).

In order to better see the duality we rewrite (3.10)-(3.11) as follows: we express the direct

MR transform

_M = M . v L (A.la)

by

where

We observe that

DO k=L,...,1

V k-I = D_-lv k

d _ = GDv k

G D = ak(Ik ok rjk-1j k_lL..k ).

Ekd k E A/'(Dkk-1 ) :=_ (Ik -- k k-, kP__l Dk )Ekd "= Ekd k

and therefore we can rewrite the inverse MR transform

v L : M-lf_M

as

where

(A.lb)

DO k=l,...,LVk = p__l vk-1 + EPd k

(A.Ic)

E P = (Ik- P:_ID_-I)Ek.

(A.2a)

(A.2b)

(A.2c)

To simplify our presentation we shall use the matrix representation of the various operators

and define

_-, =: (p:_l)*, /5:_, =: (D_,-')*, _D =: (EP)., _:P =: (GO).. (A.3)

Observe that _k-lk is a Jk-1 × Jk matrix,/5:_, is a Jk × Jk-, matrix, G_ is a (Jk- Jk-1) × Jk

matrix, and Eft is a Jk × (Jk - Jk-,). With these definitions we obtain the dual MR scheme

from (A.1)-(A.2) by applying (-) to all the operators, i.e. the direct MR transform of the

dual scheme

V/_ = J_" V L (A.4a)

is given by

DO k=L,...,1

vk- I _. "_k- l vk

d"= k

(A.4b)
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where(_b is definedin CA.3).The inverseMR transform of the dual scheme

v L = ._-x .fi_ (A.5a)

is given by

DO k=l,...,L_k= _L,_k-, + _dk (a.Sb)

where/_P is defined in (A.3). Observe that the dual of the dual is the original scheme.

It follows from the above definitions that for 1 _< k < L

e L (PLL_, p_+I)EP [(EP).(p_+,). (pt_i).l, = -5_k ..._-, == "" = ... Ink(D_+, )1" (_)"

and

CoL = PL_I ... Po1 = [(Pol)*... (Pt_I)*]* = [D°...DL-1)I" = (/_)" ;

thus

M-' = (M)*.

In [H3] we also show that M is associated with discretization Ok and reconstruction _'k

such that (RkI)k) : _ --* _" is the adjoint of (RkDk).

Acknowledgements.

The author is obliged to Jerry South for his invaluable advice.

Many thanks to my collaborators Remi Abgrall, Paco Arandiga, Barna Bihari, Rosa Donat

and Itai Yad-Shalom.

This research was supported at UCLA by Grants ONR-N00014-92-J-1890 and NSF-DMS91-

03104, and at ICASE by NASA Contract No. NAS1-19480.

26



References

[AC] F. Arandiga and V. Candela, "Multiresolution standard form of a matrix", UCLA

CAM Report 92-37, August 1992.

[ACD] F. Arandiga, V. Candela and R. Donat, " Fast multiresolution algorithms for solving

linear equations: A comparative study", UCLA CAM Report 92-52, December 1992.

[ADH] F. Arandiga, R. Donat and A. Harten, "Multiresolution based on weighted averages

of the hat function", UCLA CAM Report 93-34, September 1993.

[AH1] R. Abgrall and A. Harten, "Multiresolution analysis on unstructured meshes: pre-

liminary report", CAM report 94-26, July 1994.

[AH2] R. Abgrall and A. Harten, "Multiresolution schemes for hyperbolic conservation laws

on unstructured meshes", To be published as an INRIA report.

[BCR] G. Beylkin, R. Coifman and V. Rokhlin, "Fast wavelet tranform and numerical

algorithms. I," Comm. Pure Appl. Math. 44, pp. 141-183, 1991.

[BH1] B. Bihari and A. Harten, "Application of generalized wavelets: An adaptive mul-

tiresolution scheme", Preprint, October 1993; to appear in Jour. Appl. Num. Math.

[BL] A. Brandt and A.A. Lubrecht, "Multilevel matrix multiplication and fast solution of

integral equations," Jour. Comput. Phys. 90, pp. 348-370, 1990.

[BMP] E. Bacry, S. Mallat and G. Papanicolau, "A wavelet based space-time adaptive nu-

merical methods for partial differential equations," Mathematical Modelling and Nu-

merical Analysis 26, pp. 703-834, 1992.

[CDF] A. Cohen, I. Daubechies and J.-C. Feauveau, "Biorthogonal bases of compactly

suported wavelets", Comm. Pure Appl. Math., Vol. 45, pp. 485-560, 1992.

IDa] I. Daubechies, "Orthonormal bases of compactly supported wavelets," Comm. Pure

Appl. Math. 41, pp. 909-996, 1988.

[EOZ] B. Engquist, S. Osher and S. Zhong, "Fast wavelet algorithms for linear evolution

equations," ICASE Report 92-14, 1992.

[H1] A. Harten, "Discrete multiresolution analysis and generalized wavelets," J. Appl. Num.

Math. 12, pp. 153-193, 1993; also UCLA CAM Report 92-08, February 1992.

27



[H2] A. Harten, "Multiresolution representationof data. I. Preliminary Report," UCLA
CAM Report No. 93-13,June 1993.

[H3] A. Harten, "Multiresolution representation of data. II. General Framework," UCLA

CAM Report No. 94-10, April 1994; also Technical Report 3-94, Dept. of Applied

Mathematics, Tel Aviv University, April 1994.

[n4] A. Harten, "Multiresolution algorithms for the numerical solution of hyperbolic con-

servation laws," UCLA CAM Report 93-03, March 1993; to appear in Comm. Pure

Appl. Math.

[H5] A. Harten, "Adaptive multiresolution schemes for shock computations," UCLA CAM

Report 93-06, April 1993; to appear in Jour. Comput. Phys.

[HEOC] A. Harten, B. Engquist, S. Osher, and S. Chakravarthy, "Uniformly high order

accurate essentially non-oscillatory schemes, III," J. Comput. Phys. 71, pp. 231-303,

1987.

[HY] A. Harten and I. Yad-Shalom, "Fast multiresolution algorithms for matrix-vector

multiplication," ICASE Report 92-55, October 1992; to appear in SIAM Jour. Num.

Anal.

[LT] J. Liandrat and Ph. Tchamitchian, "Resolution of the 1D regularized Burgers' equation

using a spatial wavelet approximation," ICASE Report 90-83, December 1990.

[Ma] S. Mallat, "Multiresolution approximation and wavelets orthonormal bases of L2(R), ''

Trans. Amer. Math. Soc. 315, pp. 69-87, 1989.

[Me] Y. Meyer, "Ondelettes et Opdrateurs," Hermann, 1990.

[MR] Y. Maday and J.C. Ravel, "Adaptivit_ par Ondelettes: condition aux limites et dimen-

sions supdrieures", Tech. Report, Universitd. Pierre et Marie Curie, Lab. D'Analyse

Numdrique, January 1992.

[S] G. Strang, "Wavelets and dilation equations: A brief introduction," SIAM Review 31,

pp. 614-627, 1989.

28



Figure 1. Multiresolution representationof the 2-D array .

Figure 2. Multiresolution form of the operator (matrix).
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Figure 3. Multiresolution form of the Lax-Wendroff scheme.
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